Book Description: Horizons in World Physics. Volume 295 provides a detailed description of major fundamental problems of physics associated with inconsistencies of major postulates and concepts used in classical, relativistic, quantum and particle physics. The authors examine conceptual difficulties of classical dynamics, afterwards introducing notions such as energy, momentum and collision. Difficulties related to the introduction of electrodynamics based on hydrodynamic principles are described. Next, a study is presented wherein an attempt was made to explain the fundamental light properties (diffraction, photoelectric effect, pressure, refraction, dispersion and reflection). The photon flow was considered as a directed flow of socalled elementary particles (EP) passing strongly determined channels between the atomic nuclei with different concentrations of FOP. A preceding study gives an explanation for the ordinary and dark energy density of the cosmos. The authors present a connection between quantum entanglement and the absence of almost 95.5% of the energy supposed to be contained in the cosmos, taking the view that our current mathematical knowledge and general theories are in position to explain ordinary energy, dark matter and pure dark energy both qualitatively and quantitatively. A subsequent chapter investigates nonlinear propagation of ultrashort intense laser pulses through underdense plasma, presenting a paraxial theory of selffocusing of intense laser pulses due to expulsion of plasma electrons produced by the extreme ponderomotive force of a focused laser pulse. The authors address the way nanoporous materials applications in biology and medicine have been widely researched in recent years, presenting the numerical model and experimental data for imbibition. This model simulates the motion of the front of the liquid, twodimensionally imbibing the inhomogeneous nanoporous medium with altering porosity and pore size. This collection also contains a study focusing on focuses on investigating the possible use of microwave discharges to initiate ignition and detonation of air–fuel mixtures. The results can be applied to the development of volumetric ignition systems in internal combustion engines, gas turbine engines, and detonation engines. A family of long known solutions to the EinsteinMaxwell equations is revisited from a rigorous mathematical point of view by Employing the formalism of Cartan exterior differential forms. It is shown that the curvature of the spacetime supporting these electromagnetic waves vanishes in the absence of electromagnetic fields, emphasizing that the gravitational field in these solutions arises exclusively from electromagnetic effects. In closing, the nucleonnucleon interactions at low energies are described by NNpotentials that arise within the framework of the classical mesonic theory as a consequence of the interchange of mesons. The authors conclude that the NNpotentials only correspond to some residual interactions. (Nova)
We’ve partnered with Copyright Clearance Center to make it easy for you to request permissions to reuse Nova content.
For more information, click here or click the "Get Permission" button below to link directly to this book on Copyright Clearance Center's website.
