Nova Publishers
My Account Nova Publishers Shopping Cart
HomeBooksSeriesJournalsReference CollectionseBooksInformationSalesImprintsFor Authors
            
  Top » Catalog » Books » Biology » Genetics » New Research on DNA Damage Chapters » My Account  |  Cart Contents  |  Checkout   
Quick Find
  
Use keywords to find the product you are looking for.
Advanced Search
What's New? more
Emerging Materials for Environment Protection and Renewable Energy
$207.00
Shopping Cart more
0 items
Information
Shipping & Returns
Privacy Notice
Conditions of Use
Contact Us
Notifications more
NotificationsNotify me of updates to A Novel Methodology to Characterize DNA Damage Utilizing Phosphodiesterase I Function (pp. 237-253)
Tell A Friend
 
Tell someone you know about this product.
A Novel Methodology to Characterize DNA Damage Utilizing Phosphodiesterase I Function (pp. 237-253) $100.00
Authors:  (Ken Akamatsu, Radiation Effect Analysis Group, Nuclear Science and Engineering Directorate, Japan)
Abstract:
We have developed a new-conceptual analytical methodology to estimate the DNA
damage spectrum on natural DNA without radioisotope and fluorescent labeling.
DNA damage is generally classified into two categories: one is ‘strand break’, the
other is ‘nucleobase lesion’. There are two kinds of termini in the strand break pattern:
the termini with or without phosphate. We have developed the protocols to quantify
3’termini without phosphate (site 1), 3’termini with phosphate (site 2), and nucleobase
lesions (site 3). An enzyme, phosphodiestrase I (snake venom phosphodiesterase
(SVPD)), can recognize a 3’terminus without phosphate followed by production of DNA
monomers (2’-deoxynucleoside-5’-phosphate) sequentially from the 3’terminus (3’ → 5’
exonuclease function). Then, the yield of ‘site 1’ can be quantified since the amount of
the DNA monomers produced during incubation for a given period is proportional to that
of ‘site 1’. In addition, pre-treatment of irradiated DNA by another enzyme, calf intestine
alkaline phosphatase (CIAP) enables ‘site 2’ to be recognized by SVPD, because CIAP
removes phosphate at ‘site 2’ to convert into 3’OH terminus categorized in ‘site 1’.
Furthermore, pre-treatment of irradiated DNA by a chemical, piperidine, can covert most
electron-withdrawing nucleobase lesions into ‘site 2’, which can become recognizable by
SVPD after CIAP pre-treatment as mentioned above. As a result, in the case of 60Co γ-
irradiated dry DNA, the yields of total 3’termini, 3’termini without phosphate, 3’termini
with phosphate, and piperidine-labile nucleobase lesions, are estimated to be 0.102,
0.024, 0.078, and 0.084, respectively. The de novo analytical protocol is unique in the
idea itself, and future analyses based on the methodology will elucidate unknown DNA
damage spectrum using a variety of combinations of enzymes. 


Available Options:
Version:
This Item Is Currently Unavailable.
Special Focus Titles
01.Heart Failure: What a Non-Heart Failure Specialist Needs to Know
02.Bottle-Feeding: Perceptions, Practices, and Health Outcomes
03.Between Success and Failure: Assessment of Aspirations and Risk (CD Included)
04.Understanding Left and Right: An Illustrated Guide to the Political Divide
05.Phytoremediation: Methods, Management and Assessment
06.“Waste-to-Profit” (W-t-P): Value added Products to Generate Wealth for a Sustainable Economy. Volume 1
07.The Impact and Implications of Crisis: A Comprehensive Approach Combining Elements of Health and Society
08.When "We" Are Stressed: A Dyadic Approach to Coping with Stressful Events
09.The Man Brand: Why Public Campaigns Hide Half of Intimate Partner Violence
10.The Life of Abraham Lincoln: Drawn from Original Sources and Containing Many Speeches, Letters and Telegrams Hitherto Unpublished. Volume One
11.Life of Charles Dickens
12.The Inventions and Discoveries of the World’s Most Famous Scientists

Nova Science Publishers
© Copyright 2004 - 2018

A Novel Methodology to Characterize DNA Damage Utilizing Phosphodiesterase I Function (pp. 237-253)