Nova Publishers
My Account Nova Publishers Shopping Cart
HomeBooksSeriesJournalsReference CollectionseBooksInformationSalesImprintsFor Authors
  Top » Catalog » Books » Agriculture and Food Science » Soil Fertility Chapters » My Account  |  Cart Contents  |  Checkout   
Quick Find
Use keywords to find the product you are looking for.
Advanced Search
What's New? more
Novel Systems and Applications in Clean Energy
Shopping Cart more
0 items
Shipping & Returns
Privacy Notice
Conditions of Use
Contact Us
Notifications more
NotificationsNotify me of updates to Model Simulation of Carbon and Nitrogen Dynamics in a Biowaste Compost Fertilisation Experiment pp.17-34
Tell A Friend
Tell someone you know about this product.
Model Simulation of Carbon and Nitrogen Dynamics in a Biowaste Compost Fertilisation Experiment pp.17-34 $100.00
Authors:  (B. Foereid, E. Erhart, E. Schmid, W. Hartl, Plant & Soil Science, Cruickshank Building, School of Biological Science,University of Aberdeen, King's College, UK, and others)
Municipal solid wastes are an increasing problem worldwide. The most
environmentally friendly way of disposing of the organic fraction is to compost it and use
it as soil-improvement in agriculture, as it both disposes of the waste and increases soil
fertility. An experiment has been running for 11 years outside Vienna comparing biowaste
compost with mineral fertilisation and no fertilisation. The site is characterised by
high natural fertility and dry climate in the growing season. Several soil and crop
parameters were measured during the experiment, including yield, mineral nitrogen and
organic carbon and nitrogen. Simulation models provide an excellent tool to integrate
such data and provide an overall understanding of the system. We used this data set to
parameterize and compare two simulation models, EPIC and CENTURY. These models
share essentially the same carbon turnover model, but differ in the detail they describe
crop growth and water balance. We found that EPIC predicted crop yield acceptably,
while CENTURY underestimated it. Both models could predict total soil carbon and
nitrogen reasonably well, despite large differences in predicted plant production. Both
models predicted larger peaks of mineral nitrogen than observed and CENTURY
overestimated and EPIC underestimated it overall. Neither of the models could predict
soil water content very accurately. The models failed to account adequately for the slow-
release fertiliser effect of compost, possibly because of failure to accurately simulate
effect of low water availability and litter quality on decomposition rate. 

Available Options:
Special Focus Titles
01.Peter Singerís Ethics: A Critical Appraisal
02.Sexism: Past, Present and Future Perspectives
03.Body and Politics: Elite Disability Sport in China
04.Childhood and Adolescence: Tribute to Emanuel Chigier, 1928-2017
05.Renal Replacement Therapy: Controversies and Future Trends
06.Food-Drug Interactions: Pharmacokinetics, Prevention and Potential Side Effects
07.Terrorism and Violence in Islamic History and Theological Responses to the Arguments of Terrorists
08.International Event Management: Bridging the Gap between Theory and Practice
09.The Sino-Indian Border War and the Foreign Policies of China and India (1950-1965)
10.Tsunamis: Detection, Risk Assessment and Crisis Management
11.Sediment Watch: Monitoring, Ecological Risk Assessment and Environmental Management
12.Self-Regulated Learners: Strategies, Performance, and Individual Differences

Nova Science Publishers
© Copyright 2004 - 2018

Model Simulation of Carbon and Nitrogen Dynamics in a Biowaste Compost Fertilisation Experiment pp.17-34