Nova Publishers
My Account Nova Publishers Shopping Cart
HomeBooksSeriesJournalsReference CollectionseBooksInformationSalesImprintsFor Authors
  Top » Catalog » Books » Biology » Neurosciences » Astrocytes: Structure, Functions and Role in Disease Chapters » My Account  |  Cart Contents  |  Checkout   
Quick Find
Use keywords to find the product you are looking for.
Advanced Search
What's New? more
Exploring Cities and Countries of the World. Volume 1
Shopping Cart more
0 items
Shipping & Returns
Privacy Notice
Conditions of Use
Contact Us
Notifications more
NotificationsNotify me of updates to The Phosphoinositides Signal Transduction Pathway in Astrocytes (pp.37-52)
Tell A Friend
Tell someone you know about this product.
The Phosphoinositides Signal Transduction Pathway in Astrocytes (pp.37-52) $100.00
Authors:  (Vincenza Rita Lo Vasco, Department Organi di Senso, Policlinico Umberto I Faculty of Medicine and Odontoiatry, Sapienza University of Rome. Viale del Policlinico, Rome, Italy)
Signal transduction from plasma membrane to cell nucleus is a complex process depending on various components including lipid signaling molecules. Phosphoinositides (PI) constitute an important signaling system. Enzymes related to the PI signal transduction pathway may act at cell periphery, plasma membrane or nuclear level. The PI cycle was also hypothesized to be involved in neuronal as well as glial activities. Many evidences support the hypothesis that the PI cycle is involved in astrocytes activation during the neurodegeneration process. Phosphoinositide-specific phospholipase C (PI-PLC) family of enzymes is crucial in PI signaling system. In fact, PI-PLC enzymes regulate the spatial and temporal balance of PI. Thirteen mammalian PI-PLC isoforms were identified, divided into six sub-families on the basis of amino acid sequence, domain structure and mechanism of recruitment in response to activated receptors: β (1–4), γ (1, 2), δ (1, 3, 4), ϵ (1), ζ (1), and η (1-2). Different expression of the isoforms was described in pathological cells with respect to the corresponding normal counterparts. The expression panel of PI-PLC isoforms varies under different conditions, such as tumoral progression or inflammatory activation, with respect to the quiescent astrocytes counterpart. These observations suggest that in the nervous system the fine regulation of PI-PLC isoforms play a role in the activation of the glia and in the inflammation processes. 

Available Options:
Special Focus Titles
01.Peter Singer’s Ethics: A Critical Appraisal
02.Sexism: Past, Present and Future Perspectives
03.Body and Politics: Elite Disability Sport in China
04.Childhood and Adolescence: Tribute to Emanuel Chigier, 1928-2017
05.Renal Replacement Therapy: Controversies and Future Trends
06.Food-Drug Interactions: Pharmacokinetics, Prevention and Potential Side Effects
07.Terrorism and Violence in Islamic History and Theological Responses to the Arguments of Terrorists
08.International Event Management: Bridging the Gap between Theory and Practice
09.The Sino-Indian Border War and the Foreign Policies of China and India (1950-1965)
10.Tsunamis: Detection, Risk Assessment and Crisis Management
11.Sediment Watch: Monitoring, Ecological Risk Assessment and Environmental Management
12.Self-Regulated Learners: Strategies, Performance, and Individual Differences

Nova Science Publishers
© Copyright 2004 - 2018

The Phosphoinositides Signal Transduction Pathway in Astrocytes (pp.37-52)