Nova Publishers
My Account Nova Publishers Shopping Cart
HomeBooksSeriesJournalsReference CollectionseBooksInformationSalesImprintsFor Authors
            
  Top » Catalog » Books » Chemistry including Chemical Engineering » Biodiesel: Blends, Properties and Applications Chapters » My Account  |  Cart Contents  |  Checkout   
Quick Find
  
Use keywords to find the product you are looking for.
Advanced Search
What's New? more
Advances in Medicine and Biology. Volume 129
$250.00
Shopping Cart more
0 items
Information
Shipping & Returns
Privacy Notice
Conditions of Use
Contact Us
Notifications more
NotificationsNotify me of updates to Biodiesel Production using Cation-Exchange Resin as Heterogeneous Acid Catalyst pp. 235-248
Tell A Friend
 
Tell someone you know about this product.
Biodiesel Production using Cation-Exchange Resin as Heterogeneous Acid Catalyst pp. 235-248 $100.00
Authors:  (Yaohui Feng, Jianxin Li, Benqiao He, The State Key Lab of Hollow Fiber Membrane Materials and Processes, School of Material and Chemical Engineering, Tianjin Polytechnic University, Tianjin, P. R. China, and others)
Abstract:
Biodiesel production through free fatty acids (FFA) esterification with methanol using cation-exchange resin as heterogeneous acid catalyst is becoming a hotspot. In this work, three types of cation-exchange resins (NKC-9, 0017 and D61) were employed to prepare biodiesel via the batch esterification of FFA from acidified oils generated from waste frying oils. According to this study, the catalytic activity of NKC-9 was higher than that of 0017 and D61. The FFA conversion by NKC-9 increased with increasing in the amount of catalyst, reaction temperature and time and methanol/oil molar ratio. The maximal conversion of reaction was approximately 90.0%. Further, NKC-9 resin exhibited good reusability in batch esterification. Gas chromatography-mass spectrometry analysis revealed that the production was simplex and mainly composed of C16:0 (palmitic), C18:2 (linoleic), and C18:1 (oleic) acids of methyl ester, respectively. Furthermore, continuous esterification of acidified oil with methanol was carried out with NKC-9 resin in a fixed bed reactor with an internal diameter of 25 mm and a height of 450 mm to produce biodiesel. The results showed that the FFA conversion increased with increases in methanol/oil mass ratio, reaction temperature and catalyst bed height, whereas decreased with increases in initial water content in feedstock and feed flow rate. The FFA conversion kept over 98.0% during 500 h of continuous esterification processes under 2.8:1 methanol to oleic acid mass ratio, 44.0 cm catalyst bed height (the amount of packed resin 87.5 g), 0.62 ml/min feed flow rate and 65 C reaction temperature, showing a much high conversion and operational stability as compared with the batch esterification. Furthermore, the loss of sulfonic acid groups from NKC-9 resin into the production was not found during continuous esterification. In sum, NKC-9 resin as heterogeneous acid catalyst shows the potential commercial applications to esterification of FFA. 


Available Options:
Version:
Special Focus Titles
01.Multicultural and Citizenship Awareness through Language: Cross Thematic Practices in Language Pedagogy
02.The Brainstem and Behavior
03.Sustainable Development: The Context of Use of Indigenous Plants for Local Economic Growth
04.Cancer versus Nutraceuticals
05.Fundamentals of Fuel Injection and Emission in Two-Stroke Engines
06.Free to Love: Schema Therapy for Christians
07.Textiles: Advances in Research and Applications
08.Cheese Production, Consumption and Health Benefits
09.Education in Lesotho: Prospects and Challenges
10.Work-Life Balance in the 21st Century: Perspectives, Practices, and Challenges
11.Electrical Measurements: Introduction, Concepts and Applications
12.Potassium Channels in Health and Disease

Nova Science Publishers
© Copyright 2004 - 2018

Biodiesel Production using Cation-Exchange Resin as Heterogeneous Acid Catalyst pp. 235-248