Nova Publishers
My Account Nova Publishers Shopping Cart
HomeBooksSeriesJournalsReference CollectionseBooksInformationSalesImprintsFor Authors
  Top » Catalog » Books » Chemistry including Chemical Engineering » Encyclopedia of Polymer Composites: Properties, Performance and Applications Chapters » My Account  |  Cart Contents  |  Checkout   
Quick Find
Use keywords to find the product you are looking for.
Advanced Search
What's New? more
Distributed Wind Energy Generation
Shopping Cart more
0 items
Shipping & Returns
Privacy Notice
Conditions of Use
Contact Us
Notifications more
NotificationsNotify me of updates to Toughening of polylactic acid pp.991-1008
Tell A Friend
Tell someone you know about this product.
Toughening of polylactic acid pp.991-1008 $100.00
Authors:  (Long Jiang, Jinwen Zhang, Wood Materials and Engineering Laboratory, Washington State University, Pullman WA)
Polylactic acid (PLA) is a cornstarch-based biodegradable polyester. Commercial
PLAs exhibit much higher Youngís modulus and tensile strength than mainstream
petroleum-based polymers such as polyethylene (PE) and polypropylene (PP). However,
brittleness is a major problem preventing PLA from widespread applications. In this
chapter, three PLA toughening strategies by physical blending are presented, including
soft polymer inclusion toughening, rigid nanoparticle toughening and hybrid
multicomponent toughening. Poly(butylene adipate-co-terephthalate) (PBAT) is a
flexible biodegradable polyester with low strength and modulus. It was blended with
PLA using a twin-screw extruder. It was found that at only 5 wt% PBAT content, the
blend demonstrated a 10-fold increase in tensile elongation. However, this toughening
effect is achieved by sacrificing strength and modulus of the blend. Nanoparticle (e.g.,
montmorillonite and nanosized calcium carbonate) reinforced polymer composites often
exhibits superior mechanical properties because of MMTís unique layered platelet
nanostructure. At 2.5 wt% MMT content, elongation of the PLA/MMT blend tripled and
most importantly, strength and modulus of the blend increased as well. However, Both
PBAT and MMT toughening had their limitations, i.e., lack of the flexibility in the design
of product properties. Ternary blends of PLA/PBAT/MMT provided an ideal platform to
tailor mechanical properties of PLA to meet specific requirements of different
applications. Ternary system brought more flexibility in controlling the properties of the
system and provided a much larger property envelope for PLA blends. PBAT was the
main controlling factor of specimen elongation while MMT were primarily used to boost
modulus and strength of the blend. By properly adjusting their contents in the blend,
desired properties could be realized. 

Available Options:
This Item Is Currently Unavailable.
Special Focus Titles
01.Peter Singerís Ethics: A Critical Appraisal
02.Sexism: Past, Present and Future Perspectives
03.Body and Politics: Elite Disability Sport in China
04.Childhood and Adolescence: Tribute to Emanuel Chigier, 1928-2017
05.Renal Replacement Therapy: Controversies and Future Trends
06.Food-Drug Interactions: Pharmacokinetics, Prevention and Potential Side Effects
07.Terrorism and Violence in Islamic History and Theological Responses to the Arguments of Terrorists
08.International Event Management: Bridging the Gap between Theory and Practice
09.The Sino-Indian Border War and the Foreign Policies of China and India (1950-1965)
10.Tsunamis: Detection, Risk Assessment and Crisis Management
11.Sediment Watch: Monitoring, Ecological Risk Assessment and Environmental Management
12.Self-Regulated Learners: Strategies, Performance, and Individual Differences

Nova Science Publishers
© Copyright 2004 - 2018

Toughening of polylactic acid pp.991-1008